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Abstract: As cities are increasing technological efficacy on greenhouse gas (GH) emission reduction
efforts, the surrounding urban ecosystems and natural resources may be affected by these measures.
In this research, climate indicators such as heat index, extreme heat events, intensified urban heat
islands (UHIs), and sea breeze are projected for the middle and end of the 21st century to under-
stand the climate change signal on these variables with and without building energy mitigation
measures. Cities amplify extreme heat and UHI impacts by concentrating large populations and
critical infrastructure in relatively small areas. Here, we evaluate the combined climate and building
energy mitigation impacts on localized climate metrics throughout the 21st century across extreme
emission scenarios (RCP8.5) for the tropical coastal city of San Juan. The analysis of statistically
downscaled global circulation model outputs shows underestimation for uncorrected summer daily
maximum temperatures, leading to lower extreme heat intensity and duration projections from
the present time which are corrected using bias-corrected techniques. High-resolution dynamic
downscaling simulations reveal a strong dependency of changes in extreme heat events in urban
settings, however, the intensities shift to lower-level grasslands and croplands with energy mitigation
measures (combination of white roof, tilted photovoltaic roof, and efficient heating ventilation and
air conditioning systems). The building energy mitigation measures have the potential of reducing
the UHI intensities to 1 ◦C and 0.5 ◦C for the 2050 and 2100 climate periods, respectively.

Keywords: building energy; mitigation measures; climate change; future projections; extreme heat
events; Puerto Rico

1. Introduction

Tropical coastal areas contain almost one-third of the total world population and are
highly vulnerable to global climate change [1]. The Intra American Region (IAR) is a
tropical–coastal converging zone, defined as the area enclosed by 0◦ N to 30◦ N and 100◦

W to 40◦. The IAR region encompasses northern South America, Central America, the Gulf
of Mexico, the Caribbean region, and the western Atlantic, where a complex interaction
among synoptic atmospheric/oceanic patterns drives the rainfall activity in the region [2–5].
This tropical region is used in this study as a case study to assess its climatology and the
relationship between rising temperatures and other environmental variables due to a global
warming climate.

The vulnerability to climate change and associated extreme weather events in tropical
coastal areas is directly related to accelerated Sea Surface Temperatures (SSTs) and air
temperature increases [6]. In addition to higher SSTs in the IAR, the Bermuda-Azores
high-pressure system (one pole of the North Atlantic Oscillation Index) interacts with the
Caribbean low-level jet, causing downward dry air, hindering precipitation and warming
the surface [2,7]. A clear regional warming was detected for the particular case of the
IAR region for the years 1982 to 2013, where the SST had an annual trend of 0.0209 ◦C per
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year (Glenn et al., 2015) [4] and where the air temperature is observed to be rising at a
higher rate of 0.030 ◦C per year [6]. In addition, the Atlantic Warm Pool depicts a continu-
ous intensification in the last decades, which in conjunction with a warmer atmosphere
increases the risks for extreme temperature events. An excessively warmer atmosphere
may lead to localized high-pressure ridges, which could produce heat waves or extreme
heat events with potentially disastrous social, health, and economic consequences [8]. Of
concern are the several definitions of heat waves and extreme heat events that have been
proposed in the scientific literature [9–13]. A widely used approach considers the 97th
percentile for the entire weather station data based on either heat index or temperature
for two to three consecutive days [12,14,15]. Using this definition for the entire IAR region
between 1980–2014, it was found that 144 extreme heat events were reported for a period of
35 years, out of which 11 events were recorded for San Juan, Puerto Rico [14]. Local
records in San Juan indicate that the maximum daily temperature of 30–35 ◦C occurred over
14% of the time in the last 52 years, and these very warm conditions are becoming more
frequent and intense [16]. For a particular documented case of San Juan, Puerto Rico, a
high-pressure system induced low southeasterly winds responsible for record high summer
temperatures (August 2012), leading to high rates of mortality related to heat stroke and
cardiovascular diseases [17]. Extreme heat events in general expose elderly populations
and people without air conditioning units to high-risk vulnerability. For the IAR region, a
heat wave projection for the 21st century was conducted using a general circulation model
(GCM) for different climate change scenarios, indicating an increase in both frequency and
intensities [15]. Though this model is useful for evaluating global- and continental-scale
climate impacts, the coarser resolution (~100 km) limits its potential to represent regional
and local significant processes due to complex elevation, coastlines, and heterogeneity in
land cover land use (LCLU) as well as finer-scale atmospheric process (e.g., anthropogenic
feedback, clouds, and convection). A general question for urban regions, especially in
the tropics, is how different climate indices (especially extreme heat events, urban heat
islands, and heat index) are represented along with other environmental variables such as
humidity and winds for an extreme climate change scenario. One can further ask the role
of mitigation measures adopted to combat climate change impacts on urban areas and their
surrounding LCLU.

LCLU in urban surfaces generates feedback between the land and atmosphere that can
exacerbate extreme heat event conditions in densely populated cities. For example, Li and
Bou-Zeid, 2013 [18], found UHI intensification in Baltimore, MD, while Ramamurthy et al.,
2017 [19], found the NYC UHI reaching up to 10 ◦C during the summer of 2016, both attributing
synergistic interactions between extreme heat events and urban surfaces to low evapotran-
spiration over cities, high anthropogenic heat, large thermal mass of buildings and paved
materials, low wind speed, and air pollution. Li et al., 2016 [20], found enhancement of the
Beijing Metropolitan Area UHI due to wind profile changes (both speed and direction) during
heat waves, similar to results from Founda and Santamouris, 2017 [21], who found UHI intensi-
fication in Athens, Greece, to be highly dependent on wind profiles, especially low wind speed
and changes in wind directions. Others have found evidence of UHI intensification during
extreme heat in Madison, WI (reaching 1.80 ◦C during the day and 5.3 ◦C during night; [22]).
However, Scott et al., 2018 [23], showed in total of 54 US cities with daily observation records for
15 years (2000–2015) that in most of the cities analyzed, rural temperatures increased faster than
urban temperatures, leading to lower UHI magnitudes during extremely hot days. As a result,
active responses to the UHI phenomenon are highly and urgently required not only to improve
outdoor thermal comfort but also the indoor environment [24]. This underscores the need for
studies underlying land surface processes that could determine how UHIs vary over coastal
cities (Caribbean in this case) and how could they be mitigated in a future changing climate.

Consequently, policies and programs addressing mitigation due to rapidly increasing
temperatures are rapidly growing in Latin America and the Caribbean [25,26]. The United
Nations Environmental Program (UNEP), through its Economic Commission for Latin
America and the Caribbean studies (ECLAC), has demonstrated that renewable energy
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sources would play an essential role in these regions contributing to improving the inhabi-
tant quality of life. UNEP and the World Bank have several projects dealing with mitigating
climate change in regional areas, where 31% correspond to the efficient use of energy and
promotion of renewable energy sources [25]. Aggressive policies aimed at upgrading only
heating/cooling systems and appliances could result in decreased electricity use as low
as 28%, potentially avoiding the installation of new-generation capacity [27] that could
have a positive impact on the quality of the urban climate. A recent study highlights that
the built environment of the future would transform buildings into resource assets—fully
self-aware, adaptive, and with two-way communication with the electric grid (to optimize
operating cost)—and add market value to the assets [7]. In addition to this, the stricter
de-carbonization regulation would open doors to innovative designs and renewable energy
integration in all building sectors of urban regions. The free space available on rooftops
used with the full potential for energy services could achieve the de-carbonization goals
and increase the building value. For city-scale deployment, different types of roof applica-
tions (cool roof, green roof, and photovoltaic roof) on buildings have shown to reduce air
temperature and energy consumption [28–34]. One such application is rooftop photovoltaic
installations, which decrease the temperature and urban heat island (UHI) effects [28,35],
especially reducing daytime UHI and peak energy demands (Pokhrel et al., 2020) [36].
These later works show that a higher albedo of a tilted photovoltaic shaded roof can act as
a radiant barrier that reflects heat from thermal radiation from the roof surface [36,37].

In this work, we evaluate the environmental impacts of mitigation options (a com-
bination of cool roof, tilted photovoltaic roof, and efficient HVAC systems) based on the
recommendations for reducing peak air conditioning demands (with a reduction potential
of 33%) from earlier studies by Pokhrel et al. (2019b) [38] and Pokhrel et al. (2020) [36] for
the San Juan Metropolitan Area (SJMA) of Puerto Rico. This study may also support public
energy policies such as the Puerto Rico Integrated Energy Resource Plan, which aims to
increase energy efficiency on the island by 25% by 2030 and the integration of renewable
energy resources by 100% by 2050 (IRP, PREPA 2018–2019).

Evaluation of climate variables and energy demands at larger urban scales have either
focused on the use of statistical [39,40] or process-based models [41,42]. The absence of
interactions between weather and buildings is one of the limitations of these approaches
and could amplify in the context of changing climate. An approach to resolve this limitation
is by coupling weather prediction to Building Energy Models (BEMs) [43–45]. However,
the computation cost and lack of urban morphology and its corresponding parameters
have limited the studies to a few events or to short periods (<1 season). Here, we present
the impacts of mitigation options on 2 m air temperature, extreme heat events, and UHI
reduction potential for the dense population region of the SJMA for an extreme emission
scenario for a multi-year period.

The tropical coastal region of Puerto Rico and specifically the SJMA is taken as a case
study for this research. The SJMA consists of seven cities with 630 km2 area and 1 M
inhabitants. According to UN demographic projections for 2100, Puerto Rico does not have
a positive or negative trend (i.e., population does not change). However, there is a transition
plan in Puerto Rico from fossil-based generation to renewable energy. Puerto Rico, as most
tropical island states, is very dependent on foreign resources for energy generation, and is
consequently sensitive to global fluctuations in fuel costs. The island’s generating capacity
is 4879 MW, comprising 2892 MW of steam-electric, 846 MW of combustion-turbine capacity,
1032 MW of combined cycle capacity, 100 MW of hydroelectric capacity, and 9 MW of diesel
capacity. All steam turbines are oil- (2500 MW) or coal-based (450 MW) (fortieth annual
report, PREPA 2013) [46]. Thus, more than 80% of the energy production is based on oil
(75%) and natural gas (15%). The dependency on fossil fuel for energy production and the
inefficiency in the electrical energy infrastructure can be viewed as a factor for the high
electricity rates of more than USD 0.25/kWh, one of the highest of any US state or territory.
Furthermore, the service sector of the economy of Puerto Rico is very large, reflected in
large components of the residential (40%) and commercial customers (51%) in the island,
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with more than 90% of annual energy sales to these sectors alone from a total of 16,000 GWh
in 2016 (https://www.aeepr.com/INVESTORS/Default.aspx, accessed on 15 January 2023).
Most of the energy used in the residential and commercial sectors is in air conditioning to
maintain human comfort in the building sector [47] (Reddy et al., 2016), a common factor
for most tropical coastal cities, where air conditioning can often exceed 50% of the total
energy budget [48]. According to the Final Integrated Resource Plan (IRP) approved by
Puerto Rico Energy Bureau (PREB) on August 2020, 3500 MW of new power should come
from solar power with 1360 MW of battery energy storage by 2025, and energy efficiency
and demand respond programs should be introduced to reduce the demand of commercial
and industrial sectors by 2% every year. Furthermore, the IRP has plans of introducing
100% power with renewables by 2050 (https://energia.pr.gov/en/preb-approved-irp-2,
accessed on 15 January 2023). The key science questions this study attempts to answer are
as follows: how are extreme temperature events projected under a warming climate, and
what may be the role of energy mitigation measures (solar) on environmental sustainability
under a warming climate for a tropical coastal city?

The organization of the manuscript following this Introduction focuses on methods
on data used (GCM ensemble), point-based statistical downscaling for the SJMA, and
modeling with dynamic downscaling. The results are categorized with extreme heat event
projections, in addition to the presentation of dynamic downscaling results for underlying
land surface processes that change with and without mitigation measures for the future
climate change scenario.

2. Methodology
2.1. GCM Ensemble

This study explores impacts of building energy mitigation options in a warming climate.
For this, two approaches are used: single-point projections and dynamic downscaling techniques.
For single-point projections, ensemble members of GCMs are used belonging to the Fifth Climate
Model Inter-comparison Project (CMIP5; Taylor et al., 2012) [49] and are detailed in Table 1.
For each model, we considered daily maximum temperature between 2006 and 2100. Two
scenarios are considered based on the representative concentration pathways [50], RCP4.5 and
RCP8.5, which use a combination of global policies, technologies, and demographic projections
to estimate global radiative forcing paths. RCP4.5 is considered a medium-emission scenario,
with increasing global radiative forcing that stabilizes by 2100 at 4.5 W/m2. RCP8.5 is a high-
emission or “business as usual” scenario, with increasing radiative forcing reaching around
8.5 W/m2 by end of century.

2.2. Statistical Bias Correction (SBC)

For single-point projections, ensemble members of GCMs for temperature records
are further bias-corrected for mean and standard deviations for a reference point, in this
case the San Juan International Airport (SJIA). These historical records of the SJIA were in
turn used to perform bias correction GCM projections following the work of Piani et al.,
2010 [51], and Hawkins et al., 2013 [52]. The bias correction technique corrects for model
mean and standard deviation using a linear model.

TBC = Tobs,REF +
σobs,REF

σGCM,REF

(
TGCM,RAW(t)− TGCM,REF

)
(1)

Here, T refers to the temperature records and σ refers to its standard deviation. Subscripts
obs and GCM refer to observation and model data, respectively, while REF and RAW refer to
the reference (2008–2017) and entire projection periods (2006–2100). The over bar (¯) marker
denotes use of the average for the specified dataset and time period. For all models, the
geographically closest land grid point to the SJIA was used to develop all projections. A single
point is used due to GCMs’ generally coarse resolution, meaning that other grid points might
be too distant from SJIA to provide relevant information.

https://www.aeepr.com/INVESTORS/Default.aspx
https://energia.pr.gov/en/preb-approved-irp-2
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Table 1. Twenty-five-model ensemble and center of origin used in single-point heat wave projections
based on location of SJIA (18.3522 lat.◦ × −66.1186 lon.◦).

Center Model Resolution (lat.◦ × lon.◦) Selected Coordinates (lat.◦ × lon.◦)

Commonwealth Scientific and Industrial
Research Organization: Bureau of
Meteorology (Australia)

ACCESS1.0
ACCESS1.3

1.25 × 1.875
1.25 × 1.875

18.75 × −63.75
18.5 × −66

Canadian Centre for Climate Modeling and
Analysis (Canada) CanESM2 2.7906 × 2.8125 18.139 × −67.5

National Center for Atmospheric Research
(United States) CCSM4 0.9424 × 1.25 18.376 × −66.25

Centro Euro-Mediterraneo per i
Cambiamenti Climatici (Italy) CMCC-CMS 3.7111 × 3.75 17.72 × −65.625

Centre National de Recherches
Météorologiques/Centre Européen de
Recherche et de Formation Avencée en
Calcul Scientifique (France)

CNRM-CM5 1.4008 × 1.40625 18.911 × −66.094

Commonwealth Scientific and Industrial
Research Organization/Queensland Climate
Change Centre of Excellence (Australia)

CSIRO-Mk3.6.0 1.8653 × 1.875 17.72 × −66.25

NOAA Geophysical Fluid Dynamics
Laboratory (United States)

GFDL-ESM2G
GFDL-ESM2M

2.0225 × 2
2.0225 × 2

19.214 × −66.25
19.214 × −66.25

NASA Goddard Institute for Space Studies
(United States)

GISS-CM3
GISS-E2-H
GISS-E2-R

2 × 2.5
2 × 2.5
2 × 2.5

19 × 66.25
19 × 66.25
19 × 66.25

Met Office Hadley Centre (UK)
HadGEM2-AO
HadGEM2-CC
HadGEM2-ES

1.25 × 1.875
1.25 × 1.875
1.25 × 1.875

18.75 × −66.625
18.75 × 66.625
18.75 × 66.625

Institut Pierre Simon Laplace (France)
IPSL-CM5A-LR
IPSL-CM5A-MR
IPSL-CM5B-LR

1.8947 × 3.75
1.2676 × 2.5
1.8946 × 3.75

18 × −67.5
17.7464 × −65

18 × −67.5

Japan Agency for Marine-Earth Science and
Technology, Atmosphere and Ocean
Research Institute/National Institute for
Environmental Studies/Japan Agency for
Marine-Earth Science and Technology
(Japan)

MIROC-ESM
MIROC-ESM-

CHEM MIROC5

2.7906 × 2.8125
2.7906 × 2.8125

1.4008 × 1.40625

18.13897 × −67.5
18.13897 × −67.5

18.91036 × −66.0938

Max Planck Institute for Technology
(Germany)

MPI-ESM-LR
MPI-ESM-MR

1.8653 × 1.875
1.8653 × 1.875

17.71996 × −65.625
17.71996 × −65.625

Meteorological Research Institute (Japan) MRI-CGCM3 1.12148 × 1.125 18.50458 × −66.375

Institute for Numerical Mathematics
(Russia) MRI-CGCM3 1.5 × 2 18.75 × −66

2.3. Dynamic Downscaling for Future Climate Change

The results from statistical downscaling were used and served as a reference to carry out
dynamic downscaling providing key periods to simulate, referred to here as time slices, in
addition to additional advantages of a dynamic downscaling effort. The flow chart, which
describes this study’s overall methodology for future climate projections (including statistical
and dynamic downscaling), is illustrated in Figure 1. Point-based projections for temperatures
were used to forecast long-term projections of these variables until 2100, which guides the
more detailed projections. As indicated before, for detailed projections, this study uses a high-
resolution configuration of the urbanized WRF model coupled with a modified multi-layer
urban canopy and BEM parametrization as a tool to study changes in environmental variables
under climate change conditions. The bias-corrected runs of the Community Earth Systems
Model version 1 (CESM1) (Bruyere et al., 2014) [53] datasets were used as initial and boundary
conditions at a horizontal resolution 0.94 latitude× 1.24 longitude. The regional-scale biases due
to having coarse spatial resolution and limited representation of some physical processes were
corrected in CESM1 with the bias correction method developed by Bruyere et al. (2015) [53].
Their work adjusts CESM outputs by combining a 25-year (1981–2005) mean annual cycle from
ERA-Interim reanalysis and a 6-hour perturbation term representing the climate signal. The
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bias correction removes the mean annual bias while retaining the day-to-day climate variability
from CESM as follows:

CESMBC = ERAI(mean) + CESM′ (2)
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Regional modeling forced with bias-corrected CESM was shown to improve results
(Bruyere et al., 2014) [53]. Specifically, the air temperatures over the Caribbean region
showed a deceased cold bias when all boundary condition variables were corrected with
reanalysis data. Sea Surface Temperatures from bias-corrected CESM are updated daily.

High-resolution regional climate models have been used to improve the representation
of precipitation and temperature [54,55], especially in locations where complex surface
processes are significant (e.g., mountains, coasts, and cities), although some studies have
found geographically inconsistent accuracy improvements [56]. In addition, high-resolution
dynamic downscaling methods are used to derive projections of extreme events, such as
heat waves (Gao et al., 2012 [57]; Ortiz et al., 2019 [58]). Here, we employ advances in
the representation of urban physics in the WRF model to project heat wave metrics and
building energy throughout the SJMA. Our simulation approach focuses on three time periods
representing historic (2008–2012), mid-century (2048–2052), and end of the century (2092–2096)
and for the late rainfall season (LRS) only. We chose the LRS (August–November) as it is a
period where extreme heat events are more evident for the San Juan Metropolitan Area [38]
(Pokhrel et al., 2019a).

The simulation covers two sets of experiments: normal conditions and building energy
mitigation alternatives. The normal condition represents normal roof conditions, as in
BEMs, and mitigation alternatives cover a combination of building-integrated active and
passive systems such as cool roof (albedo changed to 0.7 from 0.15), higher Coefficient of
Performance (COP increase to 3.5 from 3), and addition of tilted solar photovoltaic roofs
(PV) (50% of roof area for mid-century and 100% of roof area for end-century) based on
their reduction potential for the same region. The passive building-integrated mitigation
options considered here have previously been studied [38]. For a roof with tilted PV
panels, the approach follows work from a recent study by Pokhrel et al. (2020) [36], where
the building roof temperature of the BEM was adjusted using modifications based on
the energy balance of roofs including tilted PV panels. All numerical experiments were
assessed by maintaining all land surface morphologies as of 2008–2012, which consist of
World Urban Database Access Portal Tool (WUDAPT) Land Class Zones (LCZs) for urban
classes and MODIS LCLU for natural classes. The domain configurations for dynamic
downscaling and LCLU for the finer domain are presented in Figure 2.
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3. Results
3.1. Impacts of Climate Change: GCM Ensemble of SBC (Static Bias Correction) Projections

This section details the possible impacts of climate change on extreme heat events for
the SJMA. We apply the bias correction technique outlined in Section 2 [52] to downscale
each model in a 25-member ensemble which reveals significant cold biases in raw GCM
output for the SJIA daily maximum temperature records. We use Kernel density estimates
of daily maximum temperatures for each ensemble member to quantify the impact of the
statistical downscaling technique on mean and standard deviation statistics. As shown
in Figure 3, models without bias correction generally underestimate observations by an
average of 5 ◦C. This may be partly due to SJIA’s proximity to the ocean, which is included
in more of the GCM’s grid cell area. The statistical downscaling technique modifies each
ensemble member’s distribution to match that of the station observations more closely.
In addition, inter-model spread in mean and standard deviation is reduced during the
reference period for the bias-corrected GCM.
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Figure 3. Daily maximum temperature KDE with raw GCM (25-model ensemble), with bias-corrected
GCM and observation record for SJIA.

Bias-corrected and uncorrected mean daily maximum temperatures are shown in
Figure 4a,b, showing a nearly linear trend in both the high-emission scenario (RCP8.5) and
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stabilization scenario (RCP4.5). RCP4.5 shows a linear trend of 0.1778 ◦C/decade, while
RCP8.5 grows twice as fast, 0.3555 ◦C/decade, for the raw GCM. The bias-corrected GCM
increases at a rate of 0.5 ◦C/decade and 0.233 ◦C/decade for the RCP8.5 and RCP4.5 scenar-
ios, respectively. Model spread, quantified as 95% confidence intervals, becomes slightly
wider towards the latter half of the century; however, both scenarios show significant
changes only after the middle of the century.
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Bias-corrected mean intensity, defined as the mean of extreme heat events that repre-
sent the 95th percentile (32.8 ◦C) for three consecutive days (Figure 4c), grows at a rate of
nearly 0.222 ◦C (RCP8.5) per decade, while the uncorrected record grows at 0.1 ◦C/decade,
more than two times slower. Mean extreme heat event frequency (Figure 4d) increases at a
similar rate for both scenarios until the middle of the century, increasing from two to six
events; however, event frequency remains constant after 2050 mainly due to the increase
in total duration (days) of the events (Figure 4e). The total event duration records that
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extreme heat events would last longer and increase at a rate of 3 days/year for RCP8.5,
higher by more than two times (1.222 days/year) as compared to RCP4.5. Towards the
end of century there are more hot days for the RCP8.5 scenario (Figure 4e). This is due to
both usage of a limited window for hot events to happen (i.e., August–November) as well
as a constant temperature threshold for the event. As mean daily temperatures surpass
32.8 ◦C by the early 2060s, the likelihood of any given day surpassing this temperature
increases. This might lead to separate events “consolidating” into longer-lasting extreme
heat events. It also explains why changes in this metric are much lower in uncorrected data
(Figure 4a), as temperatures are less likely to reach the extreme heat event threshold. These
results compare favorably with the 26-model ensemble used in the projections of heat wave
events for New York City [58], which corrects for the mean of the temperature distribution
and standard deviations. The bias correction technique to downscale temperatures from
the GCM to the local scale reduces differences between observation records by reducing
biases in both the mean and variance of the model. Applying the technique to each model
in the 26-member ensemble results in a reduction, in general, of inter-model spread, as all
models are downscaled to the same historical record. One limitation of this approach is
the assumption that the relationship between observations and GCM output will remain
stationary for the entire projection period, which might not account for feedback processes
such as additional anthropogenic heat and soil desiccation or moistening. In addition, the
coarser spatial resolutions of GCM and limitations of availability of different variables from
weather stations limits the application of statistical downscaling.

To partially address some of these limitations, we conducted a set of simulations using ur-
ban WRF, considered a state-of-the-art high-resolution urbanized regional climate model. This
dynamic downscaling effort incorporates most of the urban surface–atmosphere feedbacks
that may modify extreme heat event conditions, rather than statistical relationships developed
or assumptions about the stationarity of bias correction parameters. These assumptions are
particularly relevant for projections in the SJMA, as it has been shown that the stationarity
assumption may be violated in coastlines and especially in warm projections [59], where grid
cells may contain water, which in turn modifies near-surface temperatures. The results from
statistical downscaling with and without bias correction shows that the temperature starts to
change from mid-century (2050) for both RCP4.5 and RCP8.5. In addition, towards the end of
century RCP8.5 presents a maximum rise in daily maximum temperature. These results guide
us to choose RCP8.5 for mid- and end-century dynamic downscaling.

3.2. Dynamic Downscaling Model Validation

Historical period simulations (in this case urbanized WRF) were evaluated against
the San Juan International airport (SJIA) station for daily maximum temperature, relative
humidity, and wind speed for the reference historical period of 2008–2012 (Figure 5).
Simulated results were compared against Kernel density estimates (KDE), an approximation
of a dataset’s distribution. The airport station reported a mean daily maximum of 27.6 ◦C
with a standard deviation of 3.59 ◦C. WRF simulations results, interpolated using nearest
neighbor, showed a mean daily maximum of 26.9 ◦C (2.5% error) with 3.84 ◦C standard
deviation (7% error). These results are consistent with Ortiz et al. (2019) [58], who found
less than 1% and 10% error on the mean of daily maximum temperatures and standard
deviation, respectively. Relative humidity, in general, was underestimated in the WRF
simulation for values less than 40% and higher than 80%. The bimodal nature of the relative
humidity is observed in weather stations at 73 and 82%. The bimodal nature is captured in
the WRF simulation at 57 and 73%. Wind speeds for both the observation and simulation
have a mean of 4.8 m/s; however, the maximum wind speed is underestimated by the
simulation for values higher than 8 m/s by 1 to 1.5 m/s. The simulated maximum wind
speed of 15 m/s compares with 23 m/s from the observation.
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3.3. Dynamic Downscaling Model Results for Climate Change Impacts on Extreme Heat Events

The impact of climate change on extreme heat events and on other environmental
variables for the middle of the century and end of the century are evaluated in this section.
The simulation results are evaluated with and without building energy mitigation measures.
Building energy mitigation options are those that are discussed in Section 2, and include a
combination of white roof, tilted PV roof, and efficient HVAC systems (higher COP). Mean
extreme heat event intensity (Figure 6) projections show that more significant increases are
closer to the coast and in the metropolitan region than inland locations. Dynamic downscaling
without any building energy mitigation measures for the middle of the century (2048–2052;
2050) and the end of the century (2092–2096; 2100) results in increases in the extreme heat event
intensities to 35 ◦C and 35.5 ◦C, respectively, for the central urban location of the SJMA, similar
to results in the statistically downscaled projections. The maximum intensity is simulated at
the core of the city, inland to the coast at lower elevations where the dominant land category
is compact low rise. At locations southeast of the SJIA where the dominant LCLU is cropland
and grassland, the intensity is as high as 34 ◦C, higher than the threshold of 32.2 ◦C by
1.8 ◦C. Intensity, simulated to mitigate extreme temperature events, reduces the impact on
the metropolitan region. Results for 2050 and 2100 with building energy mitigation measures
reduce the event intensity by 1 ◦C and 1.5 ◦C in urban centers, whereas the maximum intensity
simulated to shift towards low-level cropland and grassland LCLU close to the southeast and
south of the SJIA. As cities increase efficacy on greenhouse gas emission reduction efforts,
the surrounding ecosystems and natural resources close to urbanization might be affected
by climate system changes and variability. Thus, it is essential to find a balance so that the
impacts on ecosystems could be minimized. Here, the building energy mitigation options
have a net result of decreasing the UHI, with a dual positive impact of mitigating climate
change impacts and reducing greenhouse gases.
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Figure 6. Extreme heat event intensities (representing greater than 95%, i.e., >32.8 ◦C) for middle of
century and end of century with and without energy mitigation measures. (a) Extreme heat event
intensity for 95% for 2050 (b) for 2100 (c) 2050 with energy mitigation options (d) for 2100 with
mitigation measures.

3.4. Dynamic Downscaling Model Results for Climate Change Impacts on Heat Index

Relative humidity (RH), which measures the saturation of the atmosphere to water vapor,
is projected to increase in all cases (or scenarios). Relative humidity in combination with air
temperature provides information on heat index, which is an important consideration that
determines how hot the body feels when exposed to ambient conditions, and this index has
also been used to study extreme heat events for the Caribbean region [14,15]. Studies have
shown that the water vapor content of air, in addition to ambient temperature, regulates the
ability of humans to cool down via evaporation of sweat. In the business-as-usual scenario,
the RH anomalies (Figure 7; left panel) without mitigation measures for the middle and end of
the century show increments. For 2050 there is no change along the coast, however, at urban
centers, a positive increase of 2.5% is simulated. For 2100 the anomalies are uniform, of 2.5 to
5%. As RH follows the temperature trend, the anomalies are lower for the higher temperature
of 2100 compared to 2050. The mitigation measures increase RH in the metropolitan region,
ranging from a 17.5% to 20% increase from historic periods. For tropical coastal cities, extreme
heat wave events are defined based on heat index, which is an essential consideration for
human health and comfort. The projection of heat index anomalies (Figure 8) indicates
increases in all periods, reaching 5% by 2050 and 7.5% by 2100 in the SJMA. The mitigating
measures reduce the heat index by 2.5% over urban centers by 2050; however, it increases to
7.5% by the end of the century.
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Figure 8. PDF of mean daily maximum temperature (left) and mean peak heat index (right) for the
densely packed region of SJMA.

The probability density function of daily maximum temperature and daily maximum
heat index for the densely packed region of the SJMA are presented in Figure 8. The
mean daily maximum temperatures are 31.2 ◦C, 32.3 ◦C, and 33.3 ◦C, respectively, for
historic, mid-century, and end-of-century periods. However, the building energy mitigation
measures reduce the mean to 31 ◦C and 31.8 ◦C with a reduction potential of 2.3 ◦C and
1.5 ◦C for 2050 and 2100, respectively. The tail of distribution for 2050 has a reduction
potential of 0.8 ◦C from historic periods. Comparison of the tail of distributions from
2050 and 2100 with and without mitigation measures shows a reduction potential of
1.8 ◦C and 1.2 ◦C simultaneously, indicating a reduction in extreme heat events. The daily
maximum heat index also shows the same reduction potential for the mean distribution
without building energy mitigation measures. However, the distribution does not indicate
any significant improvements when compared with and without mitigation measures. This
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is mainly due to the proportional increase in relative humidity coinciding with the decrease
in temperature throughout the SJMA.

3.5. Model Results for Climate Change Impacts on the Boundary Layer

In order to study the boundary layer profile variation for mid- and end-century periods
with and without building energy mitigation measures, air temperature (contour lines in ◦C)
is plotted with horizontal wind vectors and shaded contours for vertical wind are shown in
Figure 9 for the historic period at 18 UTC and 10 UTC. From Figure 9 it is noticed that the
temperature in the upper atmosphere for topography greater than 600 m does not change
significantly between both 18 and 10 UTPC. However, the horizontal wind speed near the
surface (elevation < 200 m) is simulated to be greater than 2–3 ◦C for 18 UTC, and also the
horizontal wind speed is greater for this region especially due to the influence of sea breeze.
Vertical upward convective motion is seen to be maximum during afternoon in the urban
region, and a circulation is simulated between urban locations and the nearby ocean. However,
during the morning hour (10 UTC), vertical motion is noticed at higher elevation (>400 m)
over the land with much higher wind speed as compared to the urban region and nearby
ocean, and circulation is seen over this topography with higher horizontal wind speed.
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Figure 9. Temperature profile (contour lines), horizontal wind vector, and shaded contour of vertical
wind (W in m/s) for mean of 18 UTC (2 PM LST) (left) and 10 UTC (6 AM LST) (right). The red
line represents urban locations and blue line delineates ocean. The blue colors represent downward
vertical motion, whereas the yellow–red shows upward vertical motion. The green filled solid line
represents topography.

In addition to the historic period analysis of the boundary layer, the influence of
climate change with and without building energy mitigation measures is studied to learn
of any significant impacts on the vertical structure of the temperature, the wind speed,
and convective circulation for 2 PM LST (Figure 10). For this reason, Figure 10 shows a
temperature (contour lines) and horizontal wind vector difference for the middle and end of
the century with the historic period in addition to the vertical wind (W) as a shaded contour.
From the figure it is noticed that the climate change impacts increase the near-surface urban
air temperature from 0.9 to 1.1 ◦C for 2050 and 1.8–2 ◦C by 2100, respectively, as compared
to the historic period. The horizontal wind speed just over the urban region is seen to
decrease by 0.5 m/s and 1–1.5 m/s for 2050 and 2100, respectively. The vertical wind
circulation for 2050 and 2100 without building energy mitigation measures does not show
any noticeable difference, despite the high difference in mean maximum temperature. This
is mainly because of the high reduction in wind speed for 2100 as compared to 2050, which
fails to produce a significant change in vertical wind speed. Energy mitigation measures
do not show significant differences in temperature over the entire region, except over the
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urban region where 0–0.3 ◦C and 1 ◦C increases are noticed for the 2050 and 2100 periods
as compared to the historic period.
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Figure 10. Air temperature difference (contour lines), horizontal wind vector difference, and shaded
contour of vertical wind for mean of 18 UTC (2 PM LST). The red line represents urban locations and
blue line delineates ocean. The blue shaded colors represent downward vertical motion, whereas the
yellow–red shows upward vertical motion. The green filled solid line represents topography. (a) contour
lines temperature difference (2050–2010) vertical wind difference shaded contours (b) temperature
difference, wind difference (2100–2010) (c) temperature difference, wind difference 2050 with mitigation
options—2010 (d) temperature difference, wind difference 2100 with mitigation options-2010.

3.6. Model Results for Climate Change Impacts on UHI

The UHI phenomenon can interact with the heat wave or extreme temperature event,
and it is one of the most common behaviors reported due to climate change, making the local
urban environment warming more lasting and devastating (He Bao-Jie., 2019). For this reason,
we studied peak daytime temperatures to evaluate the UHI over the metropolitan region of
San Juan passing through −66.1◦ longitude (shown in Figure 1). The maximum daily UHI
intensities for historic, mid- and end-of-century periods are 3 ◦C, 4 ◦C, and 5 ◦C, respectively,
representing a climate change signal without building energy mitigation measures (Figure 11).
The mitigation measures have the potential of reducing the UHI intensities to 1 ◦C and 0.5 ◦C
for the 2050 and 2100 climate periods, respectively.
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Figure 11. The 2 m air maximum temperature for historic (2010), mid-century, and end-of-century
periods with and without mitigation measures passing through −66.1◦ longitude over San Juan. The
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4. Discussion

An analysis of statistically downscaled global model output for New York shows an
underestimation of uncorrected summer daily maximum temperatures, leading to lower heat
wave intensity and duration projections, similar to our findings. However, the bias-corrected
statistical downscaling reveals much closer results to observation records [58] (Ortiz et al., 2019).
High-resolution dynamic downscaling simulations reveal a strong dependency of changes
in event duration and intensity on geographical location and urban density. Event intensity
changes are expected to be highest closer to the coast, where afternoon sea breezes have
traditionally mitigated summer high temperatures. Meanwhile, event intensity is largest over
Manhattan (reaching 34.5 ◦C and 37 ◦C by 2050 and 2100, respectively), where the urban canopy
is denser and taller [58] (Ortiz et al 2019), similar to the SJMA, a coastal metropolitan region of
Puerto Rico where heat wave intensity can reach as high as 34 ◦C and 35 ◦C for 2050 and 2100,
respectively, considering the high-emission (RCP8.5) scenario.

Heat index is an important metric for heat waves in the Caribbean [14,15], which
is defined by the correlation between air temperature and humidity. The means of the
maximum daily heat index were 31 ◦C, 32 ◦C, and 34 ◦C for the historic period, 2050,
and 2100, respectively. The reduction potential with mitigation measures does not reduce
the mean maximum heat index value for 2050 and 2100. No change in the heat index
with mitigation measures is mainly due to the negative correlation between the 2 m air
temperature and humidity, which is also presented in a study by Zeppetello et al., 2022 [60].
Furthermore, Zepetello et al. [60] conclude that half of year will be ‘dangerously hot’ in
the tropics by 2100, where the daily maximum heat index will reach 39.5 ◦C considering
a business-as-usual climate change scenario. A future wind speed projection (2080–2099)
of the various cities in the Iberian Peninsula shows that the future horizontal wind will
decrease by 0.77 m/s for maximum cities [61]. Our analysis also reveals that wind will
decrease by 0.5 m/s by 2050 and 1–1.5 m/s by 2100 for the SJMA considering the RCP8.5
scenario. The results presented here provide useful insights into the interplay between
regional and local climate and the potential for localized intensification of extreme heat
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events. As cities increase efficacy on greenhouse gas emission reduction efforts, the sur-
rounding ecosystems and natural resources close to urbanized areas are simulated to be
affected by climate system changes and variability. These insights may be useful for city-
level stakeholders for planning of adaptation strategies for improving population health
and energy usage. There are uncertainties in the temporal change in urban parameters such
as land cover, building height, or building technologies (e.g., air conditioning efficiency
and improved thermal performance), which might modify urban–atmosphere interactions.
One particular limitation is the assumption of static urban surface: no urban densification
and no change in populations. This limitation might be addressed by the use of future
land cover and population projections which could be provided by the policymakers and
governmental agencies. Urban densification has shown to contribute to local warming in
addition to global climate change in different places around the world, for example, in
Paris [62], Tokyo [63], Arizona [64], and Sydney [65]. However, the limitation of data on
future urban densification limits the study to some scale when the population projection is
significant. This is, however, not the case in the SJMA, as UN population projections of the
future are not significantly different from current period.

5. Conclusions

This study investigated the spatio-temporal impacts of climate change in the coastal
tropical city of San Juan, Puerto Rico. GCM models without bias correction generally
underestimate observations by an average of 5 ◦C. The statistical downscaling technique
(bias correction) modifies each ensemble member’s distribution to match that of the station
observations more closely. The dynamic downscaling used an urbanized version of WRF,
which enabled the exploration of building energy mitigation options (white roof, tilted
PV roof, and higher COP). The global climate change signal for the San Juan International
Airport indicates an increase in daily maximum temperature by 0.5 ◦C per decade, and
dynamic downscaling results demonstrate that the extreme heat event intensities may reach
35 ◦C for both mid- and end-of-century periods. The statistical downscaling further shows
that the extreme heat events would be more long lasting for the end-of-century period.
The dynamic downscaling results show that the extreme heat events are more pronounced
in the metropolitan region (urban centers) as a climate change signal for both mid- and
end-century periods. However, the combination of the mitigation measures reveals that
the extreme heat event frequency is shifted from urban centers to low-level agricultural
land and grassland.

The climate change impacts increase the near-surface urban air temperature by 0.9 to
1.1 ◦C for 2050 and 1.8–2 ◦C for 2100, respectively, as compared to the historic period. Energy
mitigation measures do not show significant differences in temperature over the entire region,
except over the urban region where 0–0.3 ◦C and 1 ◦C increases are noticed for the 2050 and 2100
periods as compared to the historic period. The horizontal wind speed just over the urban region
is seen to decrease by 0.5 m/s and 1–1.5 m/s for 2050 and 2100, respectively, and there are no
noticeable changes for 2050 and decreases by 0.5 m/s for 2100 with building energy mitigation
measures. The average daily maximum temperature for San Juan indicates that the magnitude
is greater than the historic threshold for the 95th percentile (32.8 ◦C; for extreme heat events) for
2100 (33.2 ◦C) but slightly lower for 2050 (32.2 ◦C). These are reduced significantly compared
to the threshold with building energy mitigation measures for both periods. Furthermore, the
building energy mitigation measures have the potential of reducing the UHI intensities to 1 ◦C
and 0.5 ◦C for the 2050 and 2100 climate periods, respectively.

Urban densification has shown to contribute to local warming in addition to global
climate change in different places around the world, for example, in Paris, Tokyo, Arizona
and Sydney. The assumption of considering static land cover land use for future urban
densification, as there are no significant changes in population projections (especially for
Puerto Rico), is one of the limitations of this study.
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